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Abstract: Noncontact photoplethysmography (PPG) is limited by a poor signal-to-noise ratio 
(SNR). A solution to this limitation is the use of alternate sources of optical contrast to 
generate a complementary pulsatile waveform. One such source is laser speckle contrast, 
which is modulated in biological tissues by the flow rate of red blood cells. Averaging a 
region of interest from a speckle contrast image over time allows for the calculation of a 
speckleplethysmogram (SPG). Similar to PPG, SPG enables monitoring of heart rate and 
respiratory rate. A gap in the knowledge base exists as to the precise spatiotemporal 
relationship between PPG and SPG signals. We have developed an eight-layer tissue model to 
simulate both PPG and SPG signals in a reflectance geometry via Monte Carlo methods. We 
modeled PPG by compression of the upper and lower blood nets due to expansion of the 
larger arterial layer below. The in silico PPG peak-to-peak amplitude percent was greater at 
532 nm than at 860 nm (5.6% vs. 3.0%, respectively), which matches trends from the 
literature. We modeled SPG by changing flow speeds of red blood cells in both the capillaries 
and arterioles over the cardiac cycle. The in silico SPG peak-to-peak amplitude percent was 
24% at 532 nm and 40% at 860 nm. In silico results are similar to in vivo results measured 
with a two-camera set up for simultaneous imaging of PPG and SPG. Both in silico and in 
vivo data suggest SPG has a much larger SNR than PPG, which may prove beneficial for 
noncontact, wide-field optical monitoring of cardiovascular health.  
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1. Introduction 

In the United States, an estimated 92.1 million adults have one or more types of 
cardiovascular disease (CVD) [1]. Invasive monitoring procedures for CVD are undesirable 
because they may cause additional complications and trauma to patients, especially those that 
are already in critical condition. Ideally, measurements relevant to CVD will be noncontact 
but as accurate as invasive systems. 

A photoplethysmogram (PPG) is an optical measurement that monitors blood volume 
changes. It may be utilized in a transmittance or reflectance geometry to monitor the cardiac 
cycle. Analyzing increases and decreases in blood volume within a region of interest (ROI) 
enables extraction of heart rate and respiratory rate. The pulsatile PPG waveform can be used 
to monitor anesthesia depth [2], detect hypovolemia [3], detect arrhythmia [4], and 
approximate a patient’s blood pressure [5]. Recently, photoplethysmographic imaging (PPGI) 
has been developed as a noncontact method to measure spatial information of the pulsatile 
PPG waveform using a camera and incoherent source with near-homogeneous illumination to 
measure intensity in a reflectance geometry [4]. However, PPGI is limited by the signal-to-
noise ratio (SNR), defined in this paper as the ratio of the AC-to-DC components (AC/DC) 
within the measured signal, of the system setup and the need for extensive signal processing 
to extract the desired waveforms [6]. 

We hypothesize that laser speckle imaging (LSI) will increase the SNR of the pulsatile 
waveform as compared to PPGI. The pulsatile waveform from LSI data is based on increasing 
and decreasing flow rates of red blood cells [7]. Averaging a ROI from each laser speckle 
image over time allows for the calculation of a speckleplethysmogram (SPG). Similar to the 
PPG, the SPG signal enables monitoring of the heart rate and respiratory rate variability. A 
comparison of the SPG and PPG frequency content has been performed [8–11], but analysis 
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has not been performed concerning the reflectance SPG waveform and its relationship to the 
reflectance PPG waveform. 

In particular, there is a gap in knowledge regarding the spatiotemporal relationship of the 
PPG and SPG signals. A model for PPG was proposed that suggests the reflectance signal 
originates from the compression of tissue components due to arterial expansion and the 
resulting changes in the dermal optical properties (Fig. 1) [12]. Capillary size does not change 
in a pulsatile manner, but the increased density of capillaries in the upper blood net because 
of underlying arteries could explain the origin of green PPG signals [13]. However, Monte 
Carlo methods have not successfully simulated how these phenomena result in improved 
signal with green light compared to near-infrared (NIR) light in experimental data while also 
looking at speckle contrast [14,15]. 

Regan et al. [16] recently reported on a momentum-transfer Monte Carlo model to 
simulate speckle contrast in a six-layer tissue model and study the spectral and depth 
dependence of speckle contrast. In the present study, we adapt this modeling framework to 
perform in silico study of reflectance PPG and SPG signals. We demonstrate that the model 
produces data that correspond to in vivo experimental results. Both the simulations and 
experimental results demonstrate that the SPG signal has a much higher SNR than the PPG 
signal and improved synchronization between adjacent ROIs [17]. 

 

Fig. 1. During systole, the flow speed through the artery increases when compared with 
diastole. This increased speed causes the artery to expand, which in turn compresses the upper 
and lower blood nets. SPG is sensitive to the change in flow speed, and PPG is sensitive to the 
change in optical properties due to compression. 

2. Theoretical model 

We tracked photon scattering by discrete absorption weighting using a version of the C# 
Command Line Monte Carlo model developed by the Virtual Photonics Initiative at Beckman 
Laser Institute and Medical Clinic, University of California, Irvine [18–22]. Rice et al. [23] 
modified the model to calculate speckle contrast using the field correlation function, g1(τ), for 
a two-flow system: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )2 2 21

1 2

1

0 0

τ 1 τ
τ

3

Yk y r y r
g P Y P y dydY

∞  − Δ + − Δ
 =
  

   (1) 

where <∆r1
2(τ)> and <∆r2

2(τ)> are the mean-squared displacements associated with two flow 
types, Y is the dimensionless momentum transfer, P(Y) is the normalized probability 
distribution of momentum transfer, y is the fraction of Y for one flow type, and P(y) is the 
normalized probability distribution of total momentum transfer associated with the respective 
flow type [23]. The Siegert relation is employed to calculate speckle contrast (K) using the 
following equation: 
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where T is the camera exposure time and β an empirical constant that accounts for 
experimental factors such as laser coherence. Note that the value of β is trivial for our in silico 
measurements because of the normalization process used for data analysis (discussed below). 
With knowledge of the blood volume fraction, each scattering event is defined 
probabilistically as dynamic (resulting in reduction of speckle contrast) or static. 

The six-layer model for speckle contrast used by Regan et al. [16] did not incorporate 
vessels such as the ulnar and radial arteries in the wrist, which are common locations for PPG 
measurements due to the relatively high SNR [12]. To adapt the speckle contrast model, we 
added an arterial layer of 2.3 mm in thickness within the lipid layer at a depth of 3.0 mm to 
represent the radial artery in the subcutaneous tissue (Table 1) [24–26]. We used the 
“makeTissue” function and corresponding spectral library by Jacques [27] to estimate tissue 
optical properties at 532, 660, and 860 nm. We simulated an epidermis corresponding to fair 
skin (3% melanin content) [28] and semi-infinite geometry. 

Virtual detectors in the Monte Carlo model track the reflectance of the simulated photons 
for PPG intensity calculations. The arterial layer is expanded and contracted (details below) to 
simulate the pulsatility of arteries due to contractions of the heart throughout the cardiac 
cycle. When the arterial layer expands, the lower and upper blood nets are compressed, 
increasing the blood volume fraction in those two layers (Table 1) [13]. A change in blood 
volume fraction is associated with adjusted optical properties. 

Table 1. Eight-layer model with initial layer thickness and blood volume fraction 

Layer Thickness (um) Blood Volume Fraction (%) 
 

Epidermis 75 0 

Papillary Dermis 150 0.4 
Upper Blood Net 150 4 
Reticular Dermis 800 0.4 
Lower Blood Net 400 4 

Lipid 1,425 0 
Arterial Layer 2,300 100 

Lipid 4,700 0 

 
Furthermore, virtual detectors in the Monte Carlo model track the reflected momentum 

transfer for the speckle contrast calculation. We assigned to the static scatterers a Brownian 
diffusion constant of 2x10−6 mm2/s [29]. We varied the flow speed of dynamic scatterers 
within a range reasonable for smaller, more superficial vessels such as arterioles and 
capillaries [30]. 

3. Materials and methods 

3.1 In-silico experiments 

For in silico experiments, we used one million photons for each simulation. The photons were 
distributed over a 15mm x 15mm square at the surface of the modeled tissue, and the intensity 
and speckle contrast were calculated over the central 7mm x 7mm region to avoid edge 
inconsistencies. Simulations were run at wavelengths of 532, 660, and 860 nm. We varied 
movement of dynamic scatterers over the range of 1.00 to 3.68 mm/s in 0.67 mm/s increments 
[30]. The thickness of the arterial layer was varied by ± 5% and ± 10%, and then the upper 
and lower blood nets were compressed or expanded accordingly to compensate for the change 
in thickness such that the simulated tissue maintained a total thickness of 10 mm. For 
example, when the arterial layer thickness was increased in size by 10%, the upper and lower 
blood net thicknesses were decreased such that they had an increase in blood volume fraction 
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to 6.9% in order to maintain the same total blood volume in these two layers as before the 
change in arterial thickness. To calculate speckle contrast, an exposure time of 5ms was used 
for all wavelengths. Each simulation was run twice to test model stability, and the difference 
in values was less than 0.3%, suggesting that one million photons were sufficient. 

The amplitude of the PPG signal was calculated from the simulations as the percent 
difference of reflected photons at an arterial thickness from 2.07 mm to 2.53 mm compared to 
the percentage of reflected photons at an average arterial thickness of 2.3 mm. The simulated 
amplitude of the SPG was calculated as the percent difference of the speckle contrast at the 
various flow speeds (1.00 to 3.68 mm/s) compared to the speckle contrast at a mean flow 
speed of 2.34 mm/s [30]. All results were multiplied by −1 to align the signals with blood 
pressure orientation [12]. 

3.2 In-vivo experiments 

To simultaneously measure the PPG and SPG signals, we used two Grasshopper3 cameras 
(GS3-U3-41C6NIR-C, FLIR, Wilsonville, Oregon) with macro 10X lenses (MLH-10X, 
Computar, Cary, North Carolina) for image acquisition (Fig. 2). We used an 860 nm laser 
(HPM135(860-150)G36/A960, Power Technology, Alexander, Arkansas) with an aspheric 
lens (C330TMD-B, Thorlabs, Newton, New Jersey) and diffuser (DG10-220, Thorlabs) for 
the NIR SPG measurements and a 532 nm laser (M-Series 100 mW, Dragon Lasers, China) 
with an aspheric lens (C330TMD-A, Thorlabs) and diffuser (DG10-220, Thorlabs) for the 
green SPG measurements. The lens and diffuser were used to achieve near-homogeneous 
illumination of the tissue. We switched the green SPG laser with a broadband source with a 
530 nm excitation filter (MF530-43, Thorlabs) for the incoherent green PPG measurements. 
To split the multispectral light to the two cameras, we placed an 805 nm dichroic mirror 
(DMSP805L, Thorlabs) between the cameras. To simultaneously acquire images with both 
cameras, we used an external trigger (cDAQ-9171, National Instruments, Austin, Texas). 
Images were acquired and saved using a laptop (i7-7500U, 8GB DDR4 RAM, 512GB SSD, 
80VD000KUS, Lenovo, Morrisville, North Carolina). When using the coherent sources, the 
Nyquist sampling criterion was met with both setups at 2.35 pixels per speckle [31]. 
Measurements were taken and analyzed from the wrists of four different subjects. All 
measurements were done in accordance with the human subjects protocol approved by the 
Institutional Review Board at University of California, Irvine. 

 

Fig. 2. The experimental setup used two cameras and two light sources for imaging. The 
coherent NIR source remained constant, while the green source was switched between a 
coherent and incoherent source for PPG and SPG measurements. 

Subjects placed their wrists within the camera field of view and remained still during the 
data acquisition. The cameras for the NIR and green coherent sources were set to 5 ms 
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exposure time to match the simulations. When using the green incoherent source, the camera 
was set to an exposure time of 20 ms to increase camera signal, which is essential for 
reflectance PPG measurements [32]. In silico PPG results were not affected by exposure time. 
We acquired images with pixel resolution of 1800 x 1312 for 20 seconds at 30 fps. Two 
measurements were taken from each subject. The first measurement used the NIR coherent 
source to measure NIR SPG and the incoherent source to measure green PPG, and the second 
measurement used two coherent sources to measure NIR SPG and green SPG. 

We calculated the 532 nm PPG signal by averaging the intensity of a 50x50 pixel ROI, an 
~2.3x2.3 mm2 region, from the incoherent green source. We converted raw speckle images to 
speckle contrast images by running a 7x7 sliding window filter with the equation σ/<I> over 
the raw images, where σ is the standard deviation of gray level values over the window and 
<I> is the mean gray level over the window [33]. We then determined the SPG signal by 
averaging a 50x50 pixel ROI from the speckle contrast image of the coherent sources. To 
select the specific ROI on the subject’s wrist, we tested regions located over the radial and 
ulnar arteries for representative waveforms [12]. The experimental normalized PPG and 
experimental normalized SPG were calculated by using a 30-point moving average to 
determine the DC signal and then the percent different from the AC signal to the DC signal 
[12]. We determined that we could observe the heart rate after applying a low-pass filter of 6 
Hz, well above the Nyquist rate for the standard human heart rate [34]. Results were 
multiplied by −1 to align the signals with blood pressure orientation [12]. Effectively, the 
amplitude plotted is equivalent to −100(AC/DC). 

4. Results 

Simulation data (Fig. 3) illustrate the theoretical spectral sensitivity of PPG and SPG to 
cutaneous hemodynamics. Figure 3(a) shows that as the arterial thickness increases, the 
percentage of reflected photons decreases, which causes an increase in amplitude. This 
suggests that the PPG signal at the green wavelength is more influenced by the compression 
of the dermal blood nets than at the red and NIR wavelengths. 

 

Fig. 3. (a) The simulated results for PPG and (b) SPG. The PPG signal increases in amplitude 
percent as the arterial layer thickness increases, with the green wavelength having the highest 
sensitivity. The SPG signal at the three wavelengths increases in amplitude percent as the flow 
speed increases, and the NIR wavelength has the largest dynamic range. The SPG signals at all 
wavelengths have a much larger range than the PPG signals at all wavelengths. 
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Fig. 4. (a) Green PPG and NIR SPG results from a representative subject from the two 
neighboring ROIs. (b) The green PPG signal experiences a 180° phase shift from one region to 
the next, while (c) the NIR SPG signal does not. In the corresponding frequency spectrums for 
the orange ROI before (left) and after (right) AC/DC processing, the heart rate peak has a 
smaller amplitude in the (d) PPG spectrum than the (e) SPG spectrum after processing. (f) The 
SPG has a much larger amplitude and peaks before the PPG from the same orange ROI. 

Figure 3(b) shows that as flow speed increases, the SPG signal increases in amplitude. An 
increase in flow speed corresponds to an increase in vessel diameter. All simulations for SPG 
were taken at the arterial layer thickness of 2.3 mm, since the change in speckle contrast was 
less than 2% different at any of the other arterial layer thicknesses that we evaluated in this 
work. The results of the SPG simulations suggest the SPG signal has the largest dynamic 
range at the NIR wavelength, a slightly smaller range at red wavelengths, and an even smaller 
range at green wavelengths. 

In vivo data show that the normalized NIR SPG data from a representative subject has a 
much larger amplitude percent than the normalized green PPG data from the same subject 
(Fig. 4). A phase shift between neighboring ROIs is seen in the PPG signal (Fig. 4(b)) but not 
in the SPG signal (Fig. 4(c)). The heart-rate frequencies have an over tenfold increase in 
amplitude in the frequency spectrum of SPG as opposed to PPG after AC/DC processing (Fig. 
4(d) and 4(e)). The PPG signal peak has a time delay on the order of 100 ms with respect to 
the SPG signal peak (Fig. 4(f)). The SPG data has a larger amplitude percent at NIR 
wavelengths than green wavelengths (Fig. 5). However, even at green wavelengths the SPG 
signal (Fig. 5) has a larger amplitude percent than the PPG data (Fig. 4(b)). 
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Fig. 5. SPG results taken from the same ROI simultaneously using the green and NIR coherent 
sources. The amplitude of the NIR source is larger. The two wavelengths peak at the same 
time. 

 

Fig. 6. (a) NIR SPG amplitude percent is larger than the green SPG amplitude percent 
(p<0.001) and the green PPG amplitude percent (p<0.001). The green SPG amplitude percent 
is larger than the green PPG amplitude percent (p<0.001). (b) The in silico amplitude percent 
ranges closely match the corresponding values across the subjects measured in vivo. For in 
silico green PPG, the peak-to-peak amplitude was 2.7%, compared to the in vivo peak-to-peak 
amplitude for green PPG of 0.88%. The in silico green SPG peak-to-peak amplitude was 24%, 
compared to the in vivo peak-to-peak amplitude of 23%. The in silico peak-to-peak amplitude 
for NIR SPG was 37%, compared to the in vivo peak-to-peak amplitude of 35%. 

In the four subjects, the NIR SPG has a larger peak-to-peak amplitude percent than the 
green SPG peak-to-peak amplitude percent (p<0.001) using the Wilcoxon signed rank test 
(Fig. 6(a)). Both the NIR SPG and green SPG have a larger peak-to-peak amplitude percent 
than the green PPG peak-to-peak amplitude percent (p<0.001 and p<0.001, respectively) 
using the Wilcoxon ranked sum test. 

We computed the in vivo values in Fig. 6(b) by taking the average of the median values 
from each of the four subjects. The experimental data is in good agreement with the simulated 
data (Fig. 6(b)). At a 5% expansion and contraction of the arterial layer for in silico green 
PPG, the peak-to-peak amplitude was 2.7%, compared to the in vivo peak-to-peak amplitude 
for green PPG of 0.88%. The in silico peak-to-peak amplitude for green SPG was 24%, 
compared to the in vivo peak-to-peak amplitude of 23%. The in silico peak-to-peak amplitude 
for NIR SPG was 37%, compared to the in vivo peak-to-peak amplitude of 35%. 
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5. Discussion 

Monte Carlo modeling of the PPG signal supports the model Kamshilin et al. [12] proposed 
of upper layer compression due to arterial expansion and matches previous trends in PPG 
experimental data [13]. The greater penetration depth of the NIR light versus green light in 
the skin reduces its interaction with the capillaries, which have a greater impact on the PPG 
dynamic range for intensity values. Monte Carlo modeling of the SPG signal suggests it has a 
much larger dynamic range as compared to the PPG signal. The experimental data support the 
premise that SPG at multiple wavelengths has improved signal-to-noise ratio over PPG. PPG 
has been noted to invert and change shape in the same subject in neighboring ROIs, but we 
did not observe such an inversion or change in shape for SPG extracted from the same ROIs. 
It is believed the PPG waveform inverts at neighboring ROIs near the radial artery due to 
ballistocardiography (BCG) motion artifacts [35,36]. The results suggest the larger SNR of 
the SPG signal makes it less susceptible to BCG artifacts. 

As demonstrated by in silico and in vivo results, the NIR SPG has a larger peak-to-peak 
amplitude than the green SPG. This is in line with previous work that shows that NIR 
wavelengths have greater speckle contrast sensitivity than green wavelengths due to the 
increased depth penetration of NIR light [16]. 

The SPG waveform reaches local peaks before the PPG signal, likely due to changes in 
flow speed (to which SPG is sensitive) preceding expansion and contraction of blood vessels 
(to which PPG is sensitive). The lack of phase shift in SPG versus PPG may be attributed to 
its emphasis on flow speed instead of intensity. The time delay between the peaks of the two 
signals may provide insight into patient health and risk of future cardiovascular events [37]. 

Motion artifact can play a major role in signal accuracy for both PPG and SPG. The 
current processing techniques did not account for motion artifact, but motion artifact has been 
addressed in both SPG [38] and PPG [39] acquisition through the use of alignment. The ideal 
ROI for each individual varied slightly and representative waveforms were used. Further 
enhancements can be made with the use of algorithms for peak amplitude identification in the 
images [40]. 

In the PPG simulations, the epidermal layer is assumed to be stationary in its location, 
which is physiologically inaccurate. This assumption may account for the in silico PPG 
results having a larger amplitude percent than the in vivo results. Kamshilin et al. [12] 
previously demonstrated that increased contact of the skin’s surface against a glass table 
increases the PPG amplitude percent by holding the epidermal layer stationary and further 
compressing the upper blood nets. Filtering of the SPG signal for visualization of the heart 
rate frequency may help explain why in silico peak-to-peak amplitudes for SPG are slightly 
larger than in vivo peak-to-peak amplitudes at both green and NIR wavelengths. 

Additional limitations of this study include the assumptions made in the modeling of 
cutaneous hemodynamics (i.e., only two flow speeds were used, one for dynamic scatterers 
and one for static scatterers, and vessels approximated as layers), and the small number of 
subjects. Future work should address each of these limitations. 

6. Conclusion 

We developed an eight-layer model for simulating both PPG and SPG reflectance 
measurements. The Monte Carlo simulations support the PPG model proposed by Kamshilin 
et al. [12,13]. The modeling data suggests that SPG has a considerably larger dynamic range 
at multiple wavelengths than does the corresponding PPG. The experimental data confirm the 
modeling results. 

This work provides a new method of monitoring cardiovascular health via SPG, which we 
demonstrated has a larger SNR than the more common PPG. SPG allows for noncontact 
monitoring of blood flow in the extremities. This provides opportunities for monitoring heart 
rate, peripheral arterial disease, and other cardiovascular-related diseases. For example, the 
earliest manifestations of cardiovascular disease occur in the microcirculation, and SPG in a 
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reflectance geometry provides an opportunity for monitoring the microcirculation [41]. 
Furthermore, the use of PPG and SPG to monitor the brain in models of focal and global 
ischemia [42] and Alzheimer’s disease [43] may lead to a better understanding of the role 
pulsatile cerebral hemodynamics have on neurological function and injury. 

In the future, increased analysis of SPG is necessary to determine the benefits of this 
signal for monitoring cardiovascular health. Additional clinical studies from subjects with and 
without cardiovascular disease are required to better understand the utility of SPG alone and a 
combined SPG/PPG measurement protocol. 

Funding 

National Institutes of Health (NIH) (P41 EB015890); Seed Grant Award from University of 
California; Cardiovascular Applied Research and Entrepreneurship Fellowship through the 
Edwards Lifesciences Center for Advanced Cardiovascular Technology’s NIH/NHLBI T32 
Training (5T32HL116270); NIH-funded Institute of Clinical and Translational Science 
Fellowship (TL1 TR001415); National Science Foundation Graduate Research Fellowship 
Program (DGE 1321846). 

Acknowledgments 

We acknowledge institutional support provided by the Arnold and Mabel Beckman 
Foundation and the Edwards Lifesciences Center for Advanced Cardiovascular Technology. 
We acknowledge Drs. Kristen Kelly, Caitlin Regan, and Carole Hayakawa for their 
contributions to this study. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the NIH. 

Disclosures 

The authors declare that there are no conflicts of interest related to this article. 

 

                                                                       Vol. 9, No. 9 | 1 Sep 2018 | BIOMEDICAL OPTICS EXPRESS 4316 




